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ABSTRACT 27736

The bearing capacities and settlements of rigid-surface, spherical and
conical foundation elements on sand of medium density were observed experi-
mentally in static tests. Results were compared with those established by
this investigation for circular plates loaded under the same conditions on
the same type of sand. Equations for determining the bearing capacity of
a cone and sphere were developed by theory and were supported by the experi-
mental results.

The bearing capacity and settlement, as a function of the thickness
of soil layer, were investigated to establish depth of soil beyond which
values of either stay constant.

This investigation led to the conclusion that the bearing capacity of
foundation elements with circular projected areas is a function of the
cross-sectional diameter in the plane of the ground surface and varied
directly with respect to this diameter.

As an example of this point, it was observed that the bearing capacity
of two spheres of differing spherical diameters was the same if the cross-

sectional areas at the plane of the ground surface were the same. /4%bé*'1'
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SYMBOLS AND NOTATIONS

Area, £ft° or in.2

Diameter or width of the footing, ft or in,

Cross-sectional diameter of cone

Diameter of plate whose surface area equals the surface contact area
of a cone

Unit cohesion of the soil, 1b/ft2

Adhesion force, 1b/ft®

Spherical diameter, ft or in.

The vertical distance between the surface of the ground and the base
of the footing, ft

Young's modulus of the solid, 1b/in.?

Influence value of shape pertaining to settlement

Coefficient of subgrade reaction, tons/ft>

Coefficient of subgrade reaction for a circular plate, tons/ft>
Coefficient of subgrade reaction for a 1-ft square plate, tons/ft>
Coefficient of subgrade reaction for a l1-ft diameter plate, tons/ft>
Dimensionless bearing capacity coefficient
Dimensionless bearing capacity coefficient
Dimensionless bearing capacity coefficient
Pressure per unit of surface area, 1b/£t® or 1b/in.?
Passive earth pressure without adhesion component

2

Load per unit of area, 1b/ft® or 1b/in.

Net foundation pressure, 1b/£t® or 1b/in.?

ix
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do

Ultimate bearing capacity, 1b/ft® or 1b/in.?

Ultimate bearing capacity for local shear failures, 1b/ft® or 1b/in.?
Radius of footing or one-half of the width, ft or in.

Total weight of soil mass, or weight per unit of length, 1b or 1b/ft
Settlement, ft or in.

Half the vertex angle of a cone, degrees

Unit weight of soil, 1b/ft®

Unit axial strain, in./in.

Poisson's ratio

Normal stress, 1b/ft® or 1b/in.>2

Major principal stress, 1b/ft® or 1b/in.?

Minor principal stress, 1b/ft® or 1b/in.?

Shearing stress, 1b/ft® or 1b/in.?

Angle of internal friction, degrees

Angle of rise of lower boundary of central zone under a loaded

strip footing, degrees
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CHAPTER ONE

INTRODUCTION

1.1 General

An important and major part of soil mechanics deals with foundations;
their shapes, sizes, position with respect to ground surface, bearing capa-
city of the soil and settlement.

Proper design of foundations is most essential, and should be studied
thoroughly to assure the safety and soundness of the superstructures to be
supported on the foundations. Two main requirements must be satisfied;
namely, failure of the foundation by plunging must be avoided, and settle-
ment must be maintained within the limits imposed by the superstructure
that is supported.

In this investigation, the theories and techniques of soil mechanics
are employed in a study related to the landing of spacecraft on soil. 1In
particular, a study is made of the behavior under static loading of various
shapes of landing heads.

Such a study requires the use of models, since in general the proto-
type is too large to be handled in the laboratory. Models of various scale
ratios were used in order to develop expressions for behavior which can be

employed to predict the behavior of prototypes under static loading.

1.2 Objectives of Investigation

The main objective is the load-settlement study of statically loaded
foundation elements to develop expressions for predicting the load-settle-

ment relationships for circular plates, spheres, and 60 degree cones.
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In this investigation, models of the shapes of possible landing heads
of spacecraft were studied both theoretically and experimentally, with the
objective in mind of developing non-dimensional expressions for predicting
the load-settlement behavior.

Since experimental studies in this investigation involved the use of
models, another study of importance which was undertaken concerned the
depth or thickness of the foundation soil. Knowledge was desired concern-
ing the depth at which there was no appreciable influence from the boundaries
of the container. A thorough study was done through load tests using a

2.22-in, diameter plate as a foundation element.

1.3 Scope of Investigation

Though a landing spacecraft probably would cause dynamic loading as the
result of impact, the scope of this investigation is limited to static load-
ing tests on three types of foundation elements; namely, plates, spheres,
and cones. Moreover, the foundation elements tested and the respective
soil beds were limited by the means of handling and performing such tests
within the soil mechanics laboratories. The soil beds were eight times the
diameter of the plate in depth, width and length, thus placing a limitation
on the elements to be tested as the soil beds became too heavy to be handled

in the laboratory.

1.4 Foundation Elements Selected

The foundation elements selected were circular, conical, and spherical
in shape. (See Fig. 1.) The circular plates formed the basis for estab-
lishing the theory and the experimental procedures; and the observed data

from plates were compared with that from spheres and cones for the same
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conditions of foundation soil.

The plates were of three sizes: 2.22 in., 3.14 in., and 4.44 in. in
diameter, with surface areas in contact with the soil of ratios of 1 to 2
to 4 respectively. All three plates were machined from aluminum blocks
having 1/2-in. thickness. The deflections of the plates within the range of
applied loads are negligible and therefore the plates may be considered as
rigid footings.

The spheres chosen were of two sizes; 3.14 in, and 5 in. in spherical
diameter. At various embedments within the soil, the spheres furnish cross-
sectional areas, as well as surface contact areas, equivalent to those of
the plates. Therefore, the two spheres formed a basis for comparative study
with the circular plates, and also permitted a study of the effect of the
spherical diameter on the load-settlement relationship.

The conical element chosen was a right circular cone with the half
angle at the vertex equal to 30 degrees with the vertical. One cone, 6 in.
high, was used. The cone and spheres were solid aluminum castings and were

similarly considered to be rigid footings.

1.5 Foundation Medium Used

The foundation medium used was clean, dry sand that was kept at room
conditions. It was brought from the Colorado River basin in Austin, Texas.
The sand was sifted on a "Rotex" sifter, style No. 12, with a pulley speed
of 520 to 560 rpm. The sifter had two U. S§. Standard sieves, No. 30 and No.
200. The output, passing sieve No. 30 but.retained on sieve No. 200, was
collected for use in this investigation. A sieve analysis to determine

the grain size distribution is given in Chap. IV, Art. 4.1.



Examined under a magnifying lens, the sand grains were found to be of
rather smooth, round shapes. Moreover, the sand was found to be quite rich

in silica.



CHAPTER TWO

THEORETICAL CONSIDERATIONS

2.1 Introduction

The load-settlement relationships for the three types of foundation
elements were studied both theoretically and experimentally.

Figure 2 shows a typical load-settlement curve for a plate that was
loaded at a shallow depth, i.e., the depth of the soil to the bottom of the
plate did not exceed twice the diameter or width of the plate.

As seen from Fig. 2, the ultimate load that the ground can sustain
is clearly indicated by the fairly abrupt passing of the curve into a
vertical tangent, at which stage the failure of the earth support may be
identified. This type of failure is called general shear failure.22 (Refer
to Fig., 3.)

On the other hand, if the load-settlement curve does not exhibit a peak
load as for the shallow foundation (Fig. 2) but continues to descend on a slope,
as shown by the curve of Fig. 3; then the failure of the earth support is
arbitrarily specified, in accordance with accepted conceptions, as soon as
the curve passes into a steep and fairly straight tangent. Such a type of
failure is called local shear failure.22

The load which causes the failure of the earth support is called the
total or ultimate bearing capacity, and when used per unit of bearing area,
it is called the bearing capacity of the soil.

Therefore, the load-settlement relationship involves the knowledge of

the bearing capacity of the soil and the settlement of the foundation element.
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Referring to the typical load-settlement curve, Fig. 2, the early part of
the curve is almost a straight line extending to about one-half the value
of the ultimate load., Then it deviates through a curved section to pass on
to the vertical tangent. The slope of the straight line section is called
the modulus of subgrade reaction.21

In this chapter, the theoretical considerations involved in the follow-
ing load-settlement relationships are briefly discussed:

A. Bearing capacity

B. Settlement analysis

C. Theory of subgrade reaction.

2.2 The Bearing Capacity of Foundations

A. Introduction
The bearing capacity of foundations is influenced by the following
factors:8

(1) Mechanical properties of the soil:
(a) Density
(b) Shearing strength
(c) Deformation characteristics
(d) Size and shape of grains

(2) Physical definitions of loaded area:
(a) Size
(b) Shape
(c) Roughness of base
(d) Depth below ground surface

(3) The initial stresses in the soil

(4) Water conditions in the ground.
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These factors clearly indicate that the rather widespread idea that the
bearing capacity depends mainly on the characteristics of the soil in question
is incorrect. While the main difficulty in bearing capacity problems is that
of evaluating soil properties, there are many other factors to be considered.
Therefore, it is erroneous to use the bearing capacity tables of some build-
ing codes that only list the type of soil with no allowance or modification
for certain designated conditions.

B. Theory of Bearing Capacity for Shallow Footings

A number of theories have been presented which furnish expressions
for the ultimate bearing capacity. It is worth noting the theory of Prandtl,
which was originally set up for metals.

Figure 4 shows a cross-section illustrating Prandtl's plastic equili-
brium theory16 for long, loaded areas of width B on the surface of the
soil. The figure shows the three zones which exist after failure is reached.
Zone I moves downward with the footing, pushing Zone II into a radial motion.
Zone III, in turn, is pushed up and out. On the basis of these assumptions
Prandtl developed an expression for ultimate bearing capacity go , dependent
principally on the angle of internal friction ¢ as defined in Mohr-Coulomb.28
Since soils have the characteristic of compressibility, no close agreement
was reached between soils and Prandtl's hypothesis. However, the general
concepts of the‘mechanics of failure as given by this theory are reasonably
correct.

Terzagh123’ 25 in 1943 presented a more general solution for the ulti-
mate bearing capacity of long footings. Figure 5 shows the failure zones and
surfaces assumed by this theory.

Terzaghi's method contains various assumptions which are discussed in
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Chap. V in comparing results from theory to the data from experiments.
However, all the assumptions used by this theory are quite reasonable, and
results from this approach should be quite accurate for most cases.

For the benefit of the reader, the general equations for bearing
capacity from Terzaghi's theory are presented here. Some aspects of these
equations are discussed in detail in Chap. V.

Terzaghi17’ 23

showed that for general shear failure the ultimate
bearing capacity of long footings at, or below, the surface of any soil is

given by
gdo = c¢(Nc) + YB(0.5Ny) + YDy (Ng) L

where the dimensionless N coefficients N, , Ny , and N; are bearing
capacity factors that depend only on the value of the angle of internal
friction ¢ , and where

Dy = the vertical distance between the surface of the ground and

the base of the footing

Y = unit weight of the soil
¢ = cohesion per unit of area
B = width of the footing.

Figure 6 shows the relationships between the bearing capacity coefficients

. . 17, 23

and the angle of internal friction.
The above expression represents the two~-dimensional case. From an

analysis of experimental data Terzaghi obtained the following expressions

for the ultimate bearing capacity for round, shallow footings,ls’ 26

@o = 1.3c(Nc) + 0.3YyB(Ny) + ¥yDy (Ng). (2)
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An expression for the ultimate bearing capacity of purely cohesive soils
may be determined by setting the friction angle equal to zero. Similarly,
an expression for cohesionless soils may be determined by setting the cohesion
¢ equal to zero. Therefore, the expressions for the ultimate bearing capa-
city for circular footings placed on the surface of the soil (D; = 0), are

given according to Terzaghi's theory by

do 1.3c(N;) for purely cohesive soils (3

and

do 0.3yB(Ny) for purely cohesionless soils. (4)

It may be noted here that the ultimate bearing capacity for purely
cohesive soils is entirely related to the cohesion ¢ and the coefficient
Ne which is a constant. Therefore, the value of ¢go as expressed in Eq. 3
is constant for a given cohesive soil regardless of the size and shape of
footing.

On the other hand, the ultimate bearing capacity for cohesionless
soils is related to the diameter B as well as the coefficient Ny which
is a function of @ . Therefore, the value of g, as expressed in Eq. &
for a given cohesionless soil is not constant but is directly proportional
to the diameter B .

In this investigation, (refer to Chap. V), a theoretical approach
similar to that above was used to develop bearing capacity expressions for
the conical and spherical foundation elements on cohesionless soils.

8, 13, 15

. . ...5
Many other theories on bearing capacity™’ have been presented
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in the literature. These theories offer only slight modifications to the
theories of Prandtl and Terzaghi. Therefore, only these two theories are
discussed and Terzaghi's theory is employed later as the basis for compar-

ison with the experimentally observed data.

2.3 Settlement Analysis of Surface Footings

For rigid footings resting on the surface of the soils where no tilt-
ing is allowed, the settlement must be uniform. The generally accepted
pressure distribution under such footings is shown in Fig. 7 for both types
of soils, cohesionless and cohesive.20

In sand, under uniform settlement, the high resistance to compression
in the soil below the center of the footing, as compared to the lack of
resistance to compression below the edges, must result in a relatively
large pressure under the center and no pressure at the edges, as shown in
Fig. 7(a). The shearing strain, developed below the edges of the footing
due to difference in soil subsidence, is caused by a vertical force from
the footing., 1In sands, owing to the lack of rigidity, little or no force
is required to develop shearing strains at the edges of a surface footing;
whereas in cohesive soils a large force is required., This explains the
larger edge pressure distribution for clay as shown in Fig. 7 (b).

In estimating the settlement of a foundation on a clay soil, it is
important to realize that the total movement is composed of two main
portions, the immediate settlement and the consolidation settlement,

The immediate settlement is considered to be due to deformation of

the soil without volume change, by lateral yielding, and thus is taken as

the elastic settlement. It is considered to be the more important component
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for loads which are small in relation to the ultimate bearing capacity.
However, Meyerhoff9 stated that the immediate settlement appears to contain
two fairly distinct components, resulting from elastic and plastic deforma-
tions, with settlements due to plastic deformations forming up to one-
quarter of the total movement.
. 24 . .
From the theory of elasticity, the immediate settlement of a loaded

area on the surface of a semi-infinite solid is given by the expression

1_2
y=an_E_p'"'— 1 (5)

where

g, = net foundation pressure

B = breadth or diameter of the loaded area

i = Poisson's ratio

E = Young's modulus of the soil

Ip = influence value depending on the shape and rigidity of the loaded
area.

For saturated clays there is no volume change if there is no dissipa-
tion of pore pressure. Therefore, Poisson's ratio may be used as 0.5 in the
calculations of settlements. The value of E is taken from the stress-strain
curve obtained in the undrained triaxial test.

15 . 3

As shown by Skempton, Eq. 5 can be re-arranged, for convenience, in

the form

Y - 42 9o _1-p7
B do c IP E/c (6)
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where

ultimate bearing capacity

do

c apparent cohesion of the clay.
The ultimate bearing capacity of clays (for the condition of ¢ = 0) as

previously discussed is expressed by

do = c¢(Nc) + YD (Ny). )

1
Note that the middle term in Terzaghi's general expression 7, 23

dropped out due to the value of Ny = 0 for ¢ = 0. Since for surface

footings D; 1is zero, the expression is reduced to the general form of

go = cN¢ (8)
or
Ne = —%9-— ] (9)

12, 15

The value of Ip as shown by Timoshenk027 and others for circular

footings at the surface is

then for a rigid circular plate at the surface, by substitution in Eq. 6

2 |1- ¢ 5)2]
v - 4 [ i
X L 7 ) (10)

Now, by definition from the undrained triaxial compression test, the

relation between stress and strain is
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(o - %)

e = — 2 (11)

where
¢ = axial strain
0, - O3 = deviator stress
E = Young's modulus using the secant at the stress condition

equal to (cl - 03)_

Equation 11 may be written in the form

(O’l - 0'3> (0'1 ; Ua)f 1

(él - OE:Z Efe ° ()

where the , denotes failure condition. For undrained testing, the failure

e =

condition for saturated clays is represented by

(crl - 0'3>f = 2 (13)

or

G - o)

[+

= 2, (14)

Substituting in Eq. 12

<°1 - °3> 2

e = (15)

<§1 _ Ob:l E/c
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Assuming similarity between stress-strain curves from triaxial tests and
load-settlement curves from bearing capacity studies as shown in Fig. 8,
the following relation may be stated.

0, ~ G
n __:;___E;P i (16)

4o (?i _ oé:l

Solving Eqs. 10, 15 and 16 simultaneously, Eq. 17 is obtained.

€ vy 1 1
= 17)
2 BN [1 - (0.5)2]

Therefore,
~2-= 0.2945 N, ¢ 18)
or
y = 0.2945 B Ne€ (19)

Equation 19 has been derived here for circular plates; equations for
plates of different shapes can be derived similarly by using the proper
influence factor I .

Therefore, as discussed by Lee,6 this approach leads to a general
procedure for predicting plate settlements from unconfined compression tests
of a saturated clay. Referring to Fig. 8, the steps for predicting plate
settlements are as follows.

1. From the compression test, plot the stress-strain relationship.
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2. For any value of stress O , obtain the corresponding strain ¢ .

3. Using Eq. 19 and substituting the value of N; , determine the
settlement y for the value of € , corresponding to the applied
stress, and plot results. The value of N, may be obtained from
the theories of Terzaghi,23 Skempton,15 or Meyerhoff.8

Equation 19 cannot be expected to yield accurate results in the high
range of —gg— since at loads near the ultimate bearing capacity a consid-
erable zone of the clay beneath the footing is subjected to strains greater
than those at the ultimate stress in the compression test,

It is of interest to note that Skempton15 has shown the greater part
of the settlement is due to strains in the clay within a depth of not more
than four times the diameter below the base of the footing. At the greater
depths, the shear stresses are less than about 5 per cent of the net founda-
tion pressure ¢,.

As noted in the above discussion, the theory as expressed in Eq. 19
was developed for a saturated clay. No comparable theory exists for a cohe-
sionless soil; however, as discussed later some aspects of the settlement

of a plate on cohesionless soil were considered in this investigation,

2.4 The Theory of Subgrade Reaction

Referring to Fig. 2 which shows the typical load-settlement curve for
a shallow plate, the slope of the straight-line portion of the curve is the
subject of the theory of subgrade reaction.

The theory of subgrade reaction as presented by Terzaghi21 is a simpli-

fied method for the solution of settlement problems.
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The subgrade reaction is the pressure p per unit of area of the sur-
face of contact between a loaded beam or slab and the subgrade.

The coefficient of subgrade reaction #4; is the ratio between this
pressure p at any given point of the surface of contact and the settle-

ment y produced by the application of the load at that point, Therefore,

B, =-E-. (20)

The value %, depends on the elastic properties of the subgrade and
on the dimensions of the loaded area.

Terzaghi's theory21 of subgrade reaction is based on the following
simplifying assumptions:

1. The ratio 4, = —5— is independent of the pressure p, and

2. Kk, has the same value for every point of the surface acted upon

by the contact pressure.

In connection with a rigid foundation the relation #; = —§~ leads
to the fact that the distribution of the subgrade reaction p over the
base of the foundation must be planar since a rigid foundation remains plane
when it settles. Hence, we can assume that the subgrade reaction has a
planar distribution; this is contrary to the reality. (Refer to Fig. 7.)

In spite of the discrepancy between theory and reality, the theory of
subgrade reaction can be used safely in the design of footings. The errors
are within the margin of safety, and moreover the results are conservative.

The numerical values of the coefficient of subgrade reaction can either
be estimated on the basis of published data from tests or else can be derived

from field tests.
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The coefficient of subgrade reaction h@l for a square plate with a

width of one ft has been selected as a basis from which values for other

shapes and sizes may be computed. The following table, as given by Terzaghi,21

gives values for k‘l in tons per cu ft for square plates 1 ft x 1 ft resting
on sand. Terzaghi also gives values for k@l for clay; however, the experi-
mental portion of this investigation deals only with sand; therefore, only

values for sand are presented here.

TABLE 1.

Values of k‘l in Tons/ft®

Relative Density of Sand, Loose Medium Dense
Dry or moist sand, limiting values 20 - 60 60 - 300 | 300 - 1000
Dry or moist sand, proposed value 40 130 500

The coefficient 4, for a rectangular plate of width B may be ob-

tained from the relation21

- B+ 1
ke =y (B, (21)

where B is feet,
Moreover, the adjusted values for shape and size may be obtained from

the following relations:21

K, = —%— kgl for continuous footings (22)
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and

t

5y

'
I

for a square footing of width B. (23)

w
w
+]

The use of the theory of subgrade reaction has limitations due to the
simplifying assumptions upon which it is based. Referring to Fig. 2, the
line OA represents the first assumption in the theory of the subgrade
reaction; whereas, the curve O0C would be the true relationship if loading
tests were performed. As seen, therefore, the assumption is valid at best
only up to values of p equal to about one-half the ultimate bearing capa-
city. Moreover, the second assumption states that the subgrade reaction
p has the same value under all the contact area of the footing. In reality,
the{pressure at the rim of the surface of contact is different than at the
center as shown in Fig. 7.

A comparison between the values of coefficient of subgrade reaction as

determined in this investigation and as given by Terzaghi is shown later.
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CHAPTER THREE

TESTING EQUIPMENT

3.1 The Soil Beds

The soil beds were placed in boxes made out of 3/4-in. plywood. Exist-
ing soil mechanics literature indicates that foundation beds must have a
depth and width not less than four to six times the diameter or width of
the footing in order that the boundaries of the container do not affect

4
» 1 For this investigation the factor

the results of load bearing tests.1
of eight times the diameter was chosen to insure accuracy of the results.
The same depth dimension was also used for the length and width; therefore,
the foundation beds used during this investigation had the following sizes:
18 in. x 18 in. x 19 in. for the 2.22-in. diameter plate
25 in. x 25 in. x 26 in. for the 3.14-in. diameter plate
36 in. x 36 in. x 37 in. for the 4.44-in. diameter plate
The largest box was used during testing of the cone and the two spheres,

The box depth was made 1 in. deeper than required to allow for the larger

initial volume of sand in its loose condition, prior to its vibration.

3.2 Loading Machine

The loading was applied by the use of an unconfined compression testing
machine (Soil Test U-160-A) which was manufactured to be manually operated.
The machine was converted to motor-operated, with a gear to control the rate

of loading. As shown in Fig. 9, the machine, with its top cross bar removed,

—

was mounted upside down on a rigid steel frame. A double proving ring attach-

ment (Soil Test No. 2124) was fitted on the loading piston so that the applied
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load could be accurately measured to a value of about 0.3 1b,

The piston on the loading machine had a 4-in. stroke, which was suffi-
cient to produce ample settlement in all the foundation elements employed
in the tests. The settlement measurements were made with an extensometer, with
two inches of travel, which was rigidly attached to the body of the loading
machine (see Fig. 9).

The loading piston was fitted with a threaded brass head to which the

various foundation elements were attached.

3.3 Load Cells

As a control on the density of the soil to be tested, the weight of
the prepared foundation boxes had to be measured; and since the weight
exceeded the capacity of the existing platform scales in the soil mechanics
laboratories, load cells were used, Two manually-operated hoists were mounted
on the steel frame to lift the boxes so that they could be weighed by either
of two Baldwin SR-4 load cells, having capacities of 600 1b and 6000 1b.

Weights were read from a Baldwin SR-4 calibration indicator.

3.4 Vibrator

As the foundation soil had to be in a dense state, a concrete hand
vibrator with a flexible shaft was used for densifying the sand. The vibrator
was manufactured by the Viber Manufacturing Company, and has a power capacity

of 345 watts while in concrete.
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CHAPTER FOUR

TESTS - PROCEDURES AND DESCRIPTION

4.1 Sieve Analysis and Classification of the Sand

A sieve analysis using standard procedures was made to determine the
grain size distribution, and the resulting curve is shown in Fig. 10.

As seen from the grain size accumulative curve in Fig. 10, the sand
tested may be classified as a uniform fine sand, Only 7 per cent of the

sand passed the No. 80 sieve.

4,2 Density Control Test

One of the critical factors that influence the results of load-settle-
ment tests is the density of the foundation soil. To assure uniformity in
the testing conditions of the foundation soil, proper density control or
checks must be maintained for every test.

The sand, being a cohesionless material, is densified best through
vibration, and as described in Art. 3.4 a concrete vibrator was used to
attain the desired density.

The foundation boxes were calibrated along the depth with marks at
6-in. spacings. The sand was then placed in layers of approximately 6 in,
and each layer was vibrated for the specific period of time tabulated in

Table 2.
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TABLE 2,

VIBRATOR TIME AND POSITIONS

Size of Box Vibrator Vibrating Time Total time
in, position per Position per Layer
sec. min.
18 x 18 x 19 4 corners 15 1
25 x 25 x 26 4 corners 30 2
36 x 36 x 37 4 corners 30 4
4 sides 30

The new height of sand, after vibration, was measured, and the volume
was determined. Using the load cell, the sand was weighed and the density
was computed. The operation was repeated layer after layer until the box
was filled to the required height.

To be sure that the density of the soil did not vary appreciably
between the various layers, another type of test was run. One layer after
another was scraped from an already full and vibrated box. Then each layer
removed was measured for volume and weighed for density computations.

The observed results showed that the density of the sand was controlled
within a maximum variation of 4 per cent. Such a variation is thought to be
within the accepted precision required for load-settlement tests,

It is of interest to note that the vibration time varied almost directly
with respect to the volume of the sand to be densified, The 6-in. layer in
the 18-in. x 18-in. box, which measured 1.12 cu ft, was vibrated for one

minute to achieve the desired density; while a 6-in. layer in the 36-in. x
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36-in. box, which measured 4.50 cu ft, was vibrated for four minutes to
achieve the same desired density. The ratio of the volume increase was
approximately four times, which agreed with the time ratio of four. Simi-
larly, a 6-in. layer in the 25-in. x 25-in. box, which measured 2.17 cu ft,

required two minutes of vibration time to attain the same desired density.

*
4.3 Determination of the Angle of Internal Friction of the Sand

Vacuum-triaxial tests were run on samples taken from the same sand used
in this investigation. The samples were 1.4 in. in diameter and 3.2 in. in
height. They were prepared by vibration on a small vibrating platform to
attain various densities ranging from the loosest density of 95 1b/£t3 to
the maximum density of 108 1b/£t® that was attainable with this sand.

The test speeds were around 0.07 in., per minute under a vacuum up to
10 1b/in.>,

The curve which shows the relation between density and the angle of
internal friction of the sand is given in Fig. 11. The density of the sand
during the load-settlement tests ranged from 99 to 103 1b/£t2.

The angle of internal friction as determined is approximately 38.7
degrees,‘for the average density of 101 1b/ft® assumed to apply for all the
load-settlement tests. (Refer to Fig, 11.) The probable error in the value
of the density was computed for all the load-settlement tests and was found

to be 0.8 1b/ft>.

*
This section is summarized from the unpublished research investigation
of Osman I. Ghazzaly, another phase of the entire project mentioned in the
preface.



35

NOILOIMd TYNYILINI 40 3ITONV SLI ONV ANVS 40 ALISN3A N33m139 NOILVI3Y 117914

(L4 'ND ¥3d 's87) £ ‘ANVS 40 ALISN3Q

o] SOl 00! G6 086
f ! T T ! ! T j T 1 T 1 1 T T T T o¢
© -] )=
- s¢ 3
i ~
m
o) H 2
\W\ 7 m
m
(0] o
- z
] b~
) ~
- m
i 2
\ (2]
e st -
] o
=z
B -
o =
0]°
e -—




36

4.4 load-Settlement Tests, Standard Procedure for all the Footing Elements

After the soil box was filled with sand in layers, the surface of the
top layer was levelled and the layer was vibrated. Since the initial position
of the footing element with respect to the soil bed is important, great care
was taken to have the surface of the soil bed as level as possible prior to
vibration. All attempts to level the soil after vibration disturbed the sur-
face and threw off the results completely. The footing element was brought
to a "just touching" position with the surface of the sand, making certain
that no load was applied. :

The speed of the motor controlling the rate of loading was then ad-
justed to a constant rate of settlement of approximately 0.07 in. per minute,
and after setting both the load and settlement dials to zero, the testing
was started. The rate of loading of 0.07 in. per minute was selected because
it was slow enough to produce no dynamic effects. While little information
is available on the response of footings on sand as a function of the rate
of loading, information is available with regard to triaxial testing. The
accepted standard loading rate in triaxial compression tests on cohesionless
soils for static loading effects is that causing a strain of from 1/4 to 2
per cent per minute.2 Assuming that a cylinder of soil of about 2 diameters
in depth below the foundation element represents the loaded specimen, then
the adopted rate of 0.07 in. per minute falls within the accepted standard
specification. Triaxial compression tests on one type of cohesionless soil
showed only a 10 per cent increase in strength when the duration of time from
the start of loading to the time of maximum compressive stress was decreased
from 1000 seconds to 0.01 seconds.2 No difference in results were observed

for rates of loading between 1/4 and 2 per cent per minute. Thus, the results
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of this test program can be said to be the '"static" load conditions, unaf-
fected by the rate of loading.

The load was continued beyond failure, as indicated by a constant load
value with an increase in settlement. The test was stopped before any soil
started to come over the footing element which would have caused overburden
effects,

When the testing was over, the surface of the sand was struck level in
order to measure the volume of the sand, The box was then weighed to allow
the calculation of the density of the sand.

When all needed data for one test were taken, the soil box was com-

pletely emptied, and a new test was started.
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CHAPTER FIVE

RESULTS AND DISCUSSION

5.1 Effect of Depth of Soil Bed

The load-settlement tests performed to study the effect of the depth
of the soil bed on the ultimate bearing capacity, the settlement at the
ultimate bearing capacity, and the coefficient of subgrade reaction, were
run in the 18-in. x 18-in. x 19-in. box using the 2.22-in. diameter circular
plate as the foundation element.

The procedure used was the same as that described in Art. 5.4, which
was standard for all load-settlement tests. The observed data are plotted
in Figs. 12, 13, and 14. After studying the plotted data for the ultimate
bearing capacity (Fig. 12), it was felt that the sand might be slipping on
the bottom of the box during the loadings for depths of from two to four
diameters, causing a reduction in the bearing capacity. To remove the
possibility of doubt, a number of tests were performed using a roughened
base for the box, The base was roughened by gluing sand grains to it. The
observed results were the same as those from the previous standard tests,
The fact that there was no increase in load for the tests using the roughened
base may be explained by referring to the theoretical approach25 in Appendix
A, énd noting that the deepest surface at the state of failure was within
the soil even for a depth of two diameters. Therefore, the discontinuity
in the curve in Fig. 12 in the vicinity of a depth of four diameters remains
unexplained.

From an analysis of Fig. 12, which shows the effects of the soil depth
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on the ultimate bearing capacity, it may be stated that for load-settlement
tests to be free from any effects of the bottom layers, the thickness of the
soil bed tested must be at least eight times the diameter of the plate used
as the foundation element.

The same anomaly seen in Fig. 12 may also be seen in Figs. 13 and 14.
As may be noted from an examination of the plotted points in Figs. 12 and
13, the unusual results were not due to experimental error since multiple
tests yielded virtually the same values.

Figure 15 shows the percentage error that may result for depths other
than the noted depth of eight times the diameter of the plate. The
expression used in computing the percentage error is

D

E = —v. X 100

where

Vg = value at depth of eight diameters and below

Vo observed value,

Further study of Figs. 12 and 13 shows similarity in behavior in the
neighborhood of 1 to 2 diameters in depth to the depths of 8 diameters and
more. The error in the value of the ultimate bearing capacity, as shown in
Fig. 15, is about +8.5 per cent. Such a value may be of interest where deep
soil beds are not possible. Moreover, a 2-diameter soil depth is relatively
easy to prepare and handle in the laboratory.

It is to be noted here that the soil bed may not behave the same under

dynamic load. Moreover, other soils, even under static load, may behave

in a different manner than did the sand used by this investigation. There-
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fore, additional research is recommended on the minimum depth of soil bed

which can be used with accuracy for various types of soils and loads.

5.2 Load-Settlement Curves for the Plates

A, Experimental Results.

Load-settlement tests on the three plates (the 2.22 in., the 3.14
in., and the 4.44 in. in diameter) were run in the respective soil boxes
as¢previously discussed, and the observed data were plotted. Thus every
pl;te had a set of load-settlement curves from which an average load-settle-
ment curve was obtained. The average curves were used for the analysis of
the results. A typical load-settlement curve for the 2,22-in. diameter
plate is shown in Fig. 16. Average load-settlement curves for all the plates
are shown in Figs. 17 to 19. The average load-settlement curves were ob-
tained by averaging graphically the results of the individual tests. Eleven
tests were performed using the 2.22-in, diameter plate, 5 tests using the
3.14-in. diameter plate, and 7 tests using the 4.44-in. diameter plate.

It is to be noted that the type of soil failure for all the plates was
that of the general shear failure, which conforms with the established be-
havior of shallow footings as discussed in Art., 2.1.

Values of ultimate bearing capacities, the corresponding settlements
and the coefficients of subgrade reaction were read from the idealized curves
and are tabulated in Tables 3 and 4. The last column in Table 4 will be
discu;sed later.

B. Discﬁssion of Bearing Capacity.

The theory of the bearing capacity of foundations, (refer to Art.

22, 23

2.2 B), as established by Terzaghi in 1943 and which is still widely

used, has been thoroughly investigated in this study. Figure 20 shows a
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freebody diagram of the assumed failure surface, much of which is a log
spiral, under a loaded strip footing on the surface of the soil. The assump-
tions made by Terzaghi and which affect the theoretical value of the ultimate
bearing capacity are hereby discussed.

The central zone beneath the footing is a wedge in elastic equilibrium.
The soil located within this wedge-shaped body remains practically unchanged
in shape as it moves vertically downward with the footing. The lower bound-
ary of this central zone is assumed to rise at an angle to the horizontal

equal to @ for a footing with a rough base and at an angle equal to

2,23

45 + ¢/2 for a footing with a smooth base. Therefore, according to Terzaghi2 ?
this angle may have any value intermediate between ¢ and 45 + ¢/2. Such a
wide possibility in the value of the rise angle of the central wedge gives
various and different failure surfaces that affect the bearing capacity.

The effect of the variation in the angle of rise and other factors
mentioned below are studied through the example calculations, shown in
Appendix A, These calculations show the evaluation of the bearing capacity
coefficient Ny , which is the only coefficient related to the investiga-
tion., (Refer to Eq. 4.)

Figure 7(a) shows the generally accepted pressure distribution under
a rigid footing loaded on the surface of cohesionless soils. While the
pressure distribution shown may be approximated fairly well with a triangle,
at high loads the pressure distribution tends to increase at the center and
the triangle is even a better approximation. Such a pressure distribution
was used by Terzaghi in the theory under discussion. However, pressure
distribution under a footing on sand has not been thoroughly studied by

experiment and there is the possibility that other shapes of pressure dis-
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tribution exist under the base of the footing. Therefore, it was decided to
study the values of the bearing capacity coefficient Ny for three types
of pressure distribution:
(1) Triangular distribution, with the maximum ordinate under the
center of footing, (Terzaghi's assumption);
(2) Uniform distribution;
(3) Triangular distribution with the maximum ordinates under the
edges of the footing.
The results from the example calculations in Appendix A are shown in
Fig. 21. It can be seen that the assumed pressure distribution under the
base has an appreciable effect on the value of the bearing capacity. Further,
it can be seen in Fig. 21 that the angle of rise ¢ also has an appreciable
effect on the value of the bearing capacity. Further discussion relative
to the above mentioned point is given later in this section.
Analyzing the results as shown in Table 5, it is to be observed that
the ultimate bearing capacity of circular plates varies directly with respect
to the diameter of the plate. This can be seen by comparing the ratios of
the diameters with the ratios of the ultimate bearing capacities, as tabu-
lated in columns 1 and 3 of Table 5, respectively. This proves the validity

of the set expression,19 (see Eq. 4), that

do constant x B (24)

o [o.3yNY] x B (25)

At this point in the discussion, a study of the theory as compared to
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experimental testing is given. Results of this investigation as well as
those of other investigators are used in the study.

With regards to this investigation, the angle of internal friction
® of the sand, (Art. 4.3), was 38.7 degrees. The value of the bearing
capacity coefficient Ny from Fig. 6 is 96. Using this value of 96, and
the average soil density of 101 1b/ft3, the theoretical values of the bear-
ing capacity were calculated and tabulated in Table 6.

Tables 7, 8, and 9 show pertinent experimental results of some of

3,10,14

the research done on plates by other investigators. Each of these

investigations is discussed briefly to give the background and the procedures

followed by each of the authors.

Selig and McKee,14 Table 7, used uniform Ottawa sand that was kept
air-dry throughout the tests. The density of the sand ranged between 96.3
1b/£t® and 112.7 1b/£t®, with an assumed average density of 112.3 1b/ft® to
apply throughout the experimental program.14 By means of triaxial shear
tests, values of the angle of internal friction ranged from 38 degrees to
41 degrees. The plate experiments were conducted in a box approximately
48 in. square and 36 in. deep, that was built of wood and strapped for
added strength., The footings were machined from aluminum plate and the
bottoms were knurled. Static loads were applied in increments by a hydrau-
lic jack acting through a calibrated loading ring. The sand was vibrated
using a flexible-shaft concrete vibrator.

Davis and W’oodward,3 Table 8, ran their tests on cohesionless sand.
The density of the sand was 102 1b/£ft® and the angle of internal friction

was approximately 36 degrees. The soil masses on which the tests were made
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TABLE 6.
EXPERIMENTAL VERSUS THEORETICAL RESULTS

(From this study)

* *%k
Footing Dimensions Average Theoretical Ratio of
Shape Bearing Value Using Experimental
Capacity Terzaghi's Theoretical
Load Equation
In. 1b/£t® 1b/£t®
Circular 2.22 650 538 1.21
diameter
3.14 910 761 1.20
diameter
4.44 1290 1076 1.20
diameter

The experimental values are the mean values as read off the idealized
average load-settlement curves.

*k
Values calculated base on an average angle of internal friction of

38.75 degrees and a mean density of 101 pcf.
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TABLE 7.

EXPERIMENTAL VERSUS THEORETICAL RESULTS

(From Selig and McKee)

58

*
Footing Dimensions Average Theoretical Ratio of
Shape Bearing Value Using Experimental
Capacity Terzaghi's Theoretical
Load Equations
In. 1b/in.? 1b/in.?
Square 2 x2 9.3 9 1.03
3x3 15.1 13.5 1.12
4 x 4 19.1 18 1.06
Circular 2.26 9.3 5.3 1.75
diameter
3.39 14.1 7.95 1.77
Rectangular 3x6 15.9 11.7 1.36
3x9 17.5 11.7 1.50
3 x 12 22.5 11.7 1.92
3 x15 22.5 11.7 1.92
3 x18 21.7 11.7 1.85
3 x 21 23.1 11.7 2.06

*
Values calculated by R. A. Iliya based on an average angle of
internal friction of 39.5 degrees and a mean density of 112.3 1b/£t2.




TABLE 8.

3

EXPERIMENTAL VERSUS THEORETICAL RESULTS

(From Davis and Woodward)
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*
Footing Dimensions Average Theoretical Ratio of
Shape Bearing Value Using Experimental
Capacity Terzaghi's Theoretical

Load Equation

In, 1b/in.? 1b/in.®
Rectangular 1 x 24 16.0 14.7 1.09
16.0 14.7 1.09
14.0 14.7 0.95
18.0 14.7 1.23
1 x10 22.0 14.7 i 1.49

|
20.0 14.7 1.49
14.0 14.7 0.95
16.0 14.7 1.09
22.0 14.7 1.09
Circular 2 21 17.7 1.19
diameter
22 17.7 1.24
23 5 17.7 1.30
%*

Values calculated by R. A, Iliya based on an angle of internal
friction of 36 degrees and a density of 102 1b/ft°.




TABLE 9,10

EXPERIMENTAL VERSUS THEORETICAL RESULTS

(From Meyerhoff)

60

Footing Dimensions Average Theoretical Ratio of
Shape Bearing Value Using Experimental
Capacity Terzaghi's Theoretical
Equation
In. 1b/ft? 1b/£t?
Square 1/2 x 1/2 720 388 1.85
1x1 1200 775 1.55
Rectangular 1/2 x 1.1/2 700 486 1.44
1/3 x 3 1080 486 2,22
1/2 x 4 1/2 1560 486 3.2
1/2 x 6 1240 486 2.56
1 x3 1640 972 1.69

*
Values calculated by R. A. Iliya based on an angle of internal

friction of 30.5 degrees, and a density of 106 1b/ft®.
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had horizontal dimensions of from 1-1/2 to 3 ft and the depth was at least
eight times the footing width,.

Meyerhoff,10 Table 9, carried out loading tests in a stiffened steel
tank 18 in. long, 15 in. wide and 18 in. deep, which was filled in 3-in.
thick layers with a clean and dry, medium river sand., The grading lay
between 0.3 and 0.6 mm, with 50 per cent passing a 0.4 mm sieve. Each layer
was tamped with a vibrating hammer and a fairly uniform density was obtained.
The angle of internal friction was 30.5 degrees. The footings were made of
brass, and were loaded by a jack through a proving ring. The load was applied
in small steps, each increment being maintained until the settlement was
complete.

As shown in Tables 7, 8, and 9 the ratios of the experimental results
to the theoretical values of the ultimate bearing capacities ranged from
0.95 to 1.85 for square and circular footings. Higher ratios were observed
for rectangular footings.

Judging from their results it may be stated that the above mentioned

investigators3’10’14

agreed closely with the theory of Terzaghi.
Referring to the results of this investigation, it may be concluded
that the equation for the ultimate bearing capacity on the surface of

cohesionless soils as given by Terzaghi1 ?

is in close agreement with
the observed load-settlement tests (refer to Table 6 and Fig. 22). As
indicated, the ratio of the experimental results to the theoretically cal-
culated values is approximately 1.20. This difference of 20 per cent may

have been caused predominantly by the following previously discussed factors:

(1) The shape of the failure surface, and the angle of rise of the
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lower boundary of the central zone beneath the footing.
(2) The pressure distribution at the base of the footing,
(3) The true case of a three-dimensional problem as compared to
the two-dimensional analysis used in developing the theory, and
converted semi-empirically for use on three-dimensional problems.
However, some error may be attributed to the evaluation of the angle

of internal friction, and to possibly experimental procedures.

C. Discussion of Coefficient of Subgrade Reaction.
The theory of subgrade reaction as discussed in Chap. II, Art,
2.4 states that for a loaded area on a given soil the value of the coeffi-

cient of subgrade reaction A, is a constant and is equal to the relation
fe = ‘5 (20)

Referring to the average load-settlement curves for the three plates,
it can be seen that this relationship holds for each of the plates up to
where the value of p equals to about one-half the ultimate bearing capa-
city. At that point the actual curve for the load-settlement test starts
to deviate from the initial tangent modulus,

The results (refer to Table 4) show that the value of the #A; was
affected by the size of the contact surface of the loaded area. It was
found that the coefficient of subgrade reaction /4, varies inversely with
respect to the diameter of the loaded footing element. This can be seen by
comparing the ratios of 4, from Table 4 with the ratios of the diameters
of the plates from Table 5. Moreover, this relation is used in the theory

of elasticity covered below. The effect of the diameter of the plate on the
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coefficient of subgrade reaction is given in Fig. 23,

Values of the coefficient of subgrade reaction for square plates on
sand are given by Terzaghi21 as shown in Table 1. 1In order to compare values
obtained for circular plates from these experiments with values in Table 1,
the theory of elasticity will be employed to obtain a correlation factor
between values of /4, for circular and square plates.

From the theory of elasticity, the settlement of a loaded area on

the surface of a semi-infinite solid is given by the expression (refer to

Art, 23)
1-p®
y=4 B —% 1 (5)
P
since #A; , the coefficient of subgrade reaction is by definition equal to
k, = Lo (26)
y
then
1
ks = b (27)
B B S Tl I
E p
The shape factor Ip as given by Terzaghi and many others 12,15,24,27
is
Ip for a square = 0.56
= 0.7854

Ip for a circle
therefore, for a circular plate whose diameter is equal to the side of a

square, we could write the following relation:



65

/
/
/
/
/
/
/
/
NOILOV3IY 30vy¥98NS 40 IN3IDI44300
3HL Ol
31vd J0 H3IL3IWVIQ 40 NOILVI3Y
g2 OlJ
0L 09 oS ov o¢ 0¢ ol

(gts/suod)

€y  NOILOVIY 3aQVH98NS

40 1N3i0i44300

.8, ¥313nvia

(u)




66

1
. (o]
ZE (circle) _ A, _ _0.78% _ . 5 (28)
s (square) Ks 1 =
0.5

Adjusting the values proposed in Table 1 the coefficients of subgrade
reaction are obtained for a circular plate with a 1-ft diameter, in tons/fta,

as shown below,

TABLE 10.

(o)
VALUES OF %, 1IN TONS/FT°
1

Relative Density of Sand Loose Medium Dense
Dry or moist sand, limiting values 14-43 43-215 215-713
Dry or moist sand, proposed value 28 93 357

The adjusted values for various size diameters may be obtained from the

following relation as discussed above

o
g, x 1

s B (29)

>' 0
[}
I

or

o o
ksl = ksB x B (30)

o
where B is the diameter in feet. Using this relation, the &, , coefficient

g1
of subgrade reaction for a circular plate having a 1-ft diameter, should be

equal to:
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o 0
P 2,22

- - 3
5, = k‘(2,22) x =5 65 x 0.185 = 12 tons/ft

if based on the test results of the 2,22-in. diameter plate.

As seen such a value is quite low as compared to the proposed values
by Terzaghi, even for loose sand. The condition of the sand used in the
investigation may be accurately described as of medium density since the
completely loose condition gave a density of 95 1b/ft® and the densest 108
1b/£t>,

Based on the above analysis it may be concluded that the proposed
values of the coefficient of subgrade reaction by Terzaghi tend to predict
much smaller settlements than actually would occur, which may be serious for
structures where the settlement governs the design. This conclusion, of
course, is based on very limited data. However, it should be noted that
Terzaghi failed to site references, either theoretical or experimental,
that would show the derivation of the values proposed in Table 1.

In analyzing the results of the settlements which correspond to the
ultimate bearing capacity it is to be noted that the settlement varied
directly with respect to the areas of the plates, or to the square of the

diameter. (Refer to Table 5.)

5.3 Load-Settlement Curves for the Cone

Seven load-settlement tests using the cone were run in the 36-in. x
36-in. x 37-in. box, A load-settlement curve was plotted for each individual
test., From these individual curves an average load-settlement curve was
obtained for use in the analysis and comparison with the plates, A typical

load-settlement curve and the average load-settlement curve are shown in
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Figs. 24 and 25, respectively. The average load-settlement curve was ob-
tained by averaging graphically the results of the eleven tests,

Referring to Fig. 24 it may be observed that the early part of the
load-settlement relationship is irregular in that very small loads were
developed although the settlement was appreciable., This is thought to be
explained by the lack of sensitivity of the loading system to such small
loads. In the analyses it is assumed that the curve extends smoothly
back to the origin. Even though the irregularity actually exists in the
real response of the system, any discrepancy between experiment and theory
will be very small because of the very small loads in the early portion of
the curve.

From Fig. 24, it can be observed that the load-settlement curve for
the cone is almost a straight line; and the curve does not indicate an
ultimate load condition as characterized by the curve for a plate., This
bghavior is, of course, expected from a loaded cone since the cross-sectional
area at the plane of the original soil surface increases with settlement.

The loading was carried on until the cone was deep enough in the sand
so that the cross-sectional area of the cone at the plane of the original
soil surface was equal to the area of the largest plate., Even though failure
of the sand, as observed in the plate tests, possibly did not occur, in re-
ferring to the ability of the cone to carry load, the term "bearing capacity"
is employed. 1In the case of the cone, the bearing capacity is computed by
dividing the observed load by the cross-sectional area of the cone at the
plane of the original soil surface.

The bearing capacity values with the corresponding settlements were
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read from the average load-settlement curve and are tabulated in Table 11.
With regard to the theory for the computation of the bearing capacity

of a cone on cohesionless soil, the same basic assumptions previously dis-

cussed in the theory of plates were used. As before, the computations were

made for the two-dimensional case. A numerical example of the computations

is presented in Appendix B. A wedge forming an angle equal to ¢ is assumed

to develop, as shown in Fig. 37 (see Appendix B). As previously assumed
for plates, this wedge of soil moves downward and outward.

The calculations shown in Appendix B were performed using an angle
® equal to 32 degrees, the same as was used for the examples of the strip
footing. As shown, the value of the bearing capacity coefficient Ny is
equal to 20.8 which is about 0.825 of the value calculated, using the same
procedures, for the strip footing. Such a relation agrees very closely
with the experimental results where a ratio of 0.79 was observed. (Refer
to Tables 12 and 13.)

Using this factor of 0.79, the value of the bearing capacity coeffi-
cient Ny for the cone for sand with an angle of internal friction ¢
equal to 38.7 degrees is 79, which is 0.825 Ny (plate).

In the following pages expressions for the bearing capacity of a cone
are developed.

As seen from Table 12 the bearing capacity of the cone varied directly
with respect to the cross-sectional diameter at the plane of the original
soil surface. This relation was shown to be typical of circular plates
on the surface of cohesionless soil. Therefore, the bearing capacity of

the cone may be expressed in the same basic equation form previously pre-
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sented for plates. Since the ratio of 0.79 was observed between the bear-
ing capacity of the cone and the ultimate bearing capacity of the circular
plate, the expression for the bearing capacity of the cone may be written

as
g = 0.24 yBNy (plate) 1b/ft® of cross-sectional area (31)

where B is the diameter of the cone at the plane of the original soil
surface, and Ny is the bearing capacity coefficient of a circular plate
as shown in Fig. 6.

Since for a 30 degree half vertex angle, the relation between the

diameter B and the settlement height y is

v3
the bearing capacity of the cone may be expressed in terms of the settle-

ment y by the following equation
g = 0.28 yyNy (plate) 1b/ft® of cross-sectional area (33)

If the bearing capacity of the cone is to be expressed in terms of
the surface contact area, and since the ratio between this bearing capacity
and the ultimate bearing capacity of the plate is 0.28 (refer to Table 13),

the bearing capacity of the cone in terms of the surface area is given by
g = 0.084 yB,Ny (plate) 1b/£t® of surface contact area (34)

where B, 1is the diameter of the equivalent circular plate which has the

P
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same surface area as the surface contact area of the cone.
Since the relation between the diameters of the cone and the equiva-

lent circular plate is equal to

B, = 1.414 B, (35)
then, Eq. 34 may be rewritten in the form

g = 0.12 yB.Ny (plate) 1b/ft® of surface contact area (36)

where B, is the diameter of the cone at the plane of the original soil
surface. Equations 31 and 36 show that the bearing capacity of the cone as
expressed in terms of the cross-sectional area is twice that expressed in
terms of the surface contact area.

The bearing capacity of the cone may also be expressed using the basic
equation for circular plates and the theoretically developed value of Ny
(see Appendix B), Therefore, the bearing capacity of the cone may be given

by

g = 0,3yBNY (cone) 1b/£ft® of cross-sectional area 37
or expressing it in terms of the settlement vy

g = 0.345 yyNy (cone) 1b/£t® of cross-sectional area (38)

If vy equals 101 1b/ft® and Ny equals 79, the theoretical load-
settlement curve for the cone may be plotted as shown in Fig. 26. The
difference between the theoretical and experimental curves is reflected
by the factors, 0.825 and 0.79 previously discussed on page 69, The close-

ness of these two curves is thought to represent an acceptable accuracy.
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5.4 Load-Settlement Curves for the Spheres

Two spherical foundation elements were tested, with spherical diameters
of 3.14 in. and 5 in. The tests were run in the same typical procedure, out-
lined in Art. 4.4, used on the plates and cone,

A load-settlement curve was plotted for each test, and from these
curves an average load-settlement curve was obtained for each of the two
spheres. (Refer to Figs. 27 through 30.) The average load-settlement
curves were obtained by averaging graphically the results of the individual
tests. Eight tests were performed using the 3.1l4-in. diameter sphere, and
5 tests using the 5-in. diameter sphere,

From Figs. 27 and 29 it may be observed that the early part of the
load-settlement relationship is irregular in that very small loads were
developed although the settlement was appreciable. This is thought to be
explained by the lack of sensitivity of the loading system to such small
loads. 1In the analyses it is assumed that the curve extends smoothly back
to the origin. Even though the irregularity actually exists in the real
response of the system, any discrepancy between experiment and theory will
be very small because of the very small loads in the early portion of the
curve.

The load-settlement curves for the spheres were quite similar to
those observed for the cone. The curves did not show the ultimate load
characteristic as did the plates; this was expected since the cross-sectional
area of the sphere increased with settlement.

Similar to the cones, the loading was carried on until the spheres

were deep enough in the sand to furnish cross-sectional areas at the plane
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of the original soil surface equal to those of the plates. The term "bear-
ing capacity" is employed in referring to the ability of the sphere to carry
load. It is computed similarly as was the bearing capacity for the cone.

Significant results from the average load-settlement curve are shown
in Tables 14 and 15. Analyses of the results are in Tables 16 through
18.

As seen from Tables 16 and 17, the spheres behaved similarly to the
cone and plates in that the bearing capacity varied directly with the cross-
sectional diameter at the plane of the original soil surface. This relation
was true on both the 3.l4-in. diameter sphere and the 5-in. diameter sphere.
One may probably conclude that the bearing capacity of all foundation elements
having circular projected areas varies directly with the diameter of the
projected area.

A study of the results of both spheres, (refer to Table 18) revealed
that the bearing capacity was not affected by the spherical diameter for the
same projected cross section. Of course, to have equal cross-sectional
areas with two different spherical diameters, more embedment was required
for the smaller sphere. Thus, for the same bearing capacity the settlement
of the 3.14-in. diameter sphere was larger than that of the 5-in. diameter
sphere.

With regard to the theory for the computation of the bearing capacity
of a sphere on cohesionless soil, the same basic assumption previously
discussed in the theory of plates were used. As before, the computations
were made for the two-dimensional case. A numerical example of the compu-

tations is presented in Appendix C. A soil wedge is assumed to adhere to
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TABLE 18.

SIGNIFICANT COMPARATIVE RESULTS FOR THE TWO SPHERES

The 3.14-In. Diameter Sphere

Settlement Cross- Cross~ Bearing
Sectional Sectional Capacity
Areas
In. In. In.? 1b/£t?
0.42 2.137 3.59 353
0.72 2.64 5.48 425
The 5-In. Diameter Sphere
Settlement Cross- Cross- Bearing
Sectional Sectional Capacity
Areas
In. In. In.? 1b/£t?
0.24 2.137 3.59 340
0.38 2.64 5.48 420

88
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the sphere, forming an angle equal to ¢ with the tangent drawn to the
sphere at the soil level. (Refer to Fig. 38). As previously assumed for
strip footings and cones, the wedge is in elastic equilibrium and moves with
the sphere into the soil.

The calculations shown in Appendix C were performed using an angle ¢
of 32 degrees. The value of the bearing coefficient Ny calculated is equal
to 15 which is about 0.6 of the value calculated for the strip footing.

Such a relation agrees very closely with the experimental results
(refer to Table 19) where a ratio of 0.55 was observed, Using this factor
of 0.55, the value of the bearing coefficient Ny for the sphere for sand
with an angle of internal friction ¢ equal to 38.7 degrees is 53 which
is 0.55 x Ny (plate).

In the following pages expressions for the bearing capacity of a
sphere are developed.

As stated above the bearing capacity of the sphere was observed to vary
with respect to the cross-sectional diameter at the plane of the original
soil surface., Therefore, the bearing capacity of the sphere, as that of
the cone, may be expressed in the same basic equation form previously pre-
sented for plates. From Table 19 it is seen that the bearing capacity of
the sphere is 0.55 of the ultimate bearing capacity of a circular plate
having its diameter equal to that of the sphere at the plane of the original
soil surface. Therefore, the bearing capacity of a sphere may be expressed

as

g = 0.16YyBNy (plate) 1b/ft® of cross-sectional area (39)
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where B is the diameter of the sphere at the plane of the original soil
surface.

Using the following geometric relation for a sphere

B=2/y®y) (40)

where D is the spherical diameter and y is the settlement the bearing
capacity may then be expressed in terms of the settlement y as
g = 0.33y/ y(D-y) Ny (plate) 1b/ft® of cross-sectional
area. (41)
The bearing capacity of the sphere may also be expressed using the
basic equation for circular plates and the theoretically developed value

of Ny. (See Appendix C). Thus, the bearing capacity of the sphere is

given by
g = 0.3YBNy (sphere) 1b/£ft® of cross-sectional area (42)

where B 1is the cross-sectional diameter of the sphere at the plane of
the original soil surface.

Equation 42 may be expressed in terms of the settlement as

g = 0.6y / y(D-y) Ny (sphere) 1b/£ft® of cross-sectional
area (43)

If v -equals 101 1b/£t® and Ny equals 53, the theoretical load-
settle curve for the sphere may be plotted as shown in Fig. 31. The
difference between the theoretical and experimental curves is reflected by

the factors 0.6 and 0.55 previously discussed on page 87. The closeness

of the two curves is thought to represent an acceptable accuracy.
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Comparing the bearing capacities of the cone and sphere it was observed

that the ratio between the two bearing capacities was

g (cone) __0.24
q (sphere) 0.16

= 1.5 (44)

for the same equal cross-sectional areas at the plane of the soil surface,
The difference in the behavior of the cone and the sphere, as expressed

by the factor 1.5, may be explained by considering the difference in the

geometry of the two elements. To obtain the same cross-sectional area at

the plane of the original soil surface, much more settlement is required

for the cone. Consequently the surface area for the cone is larger than

that of the sphere, leading to more bearing capacity for the cone,

5.5 Summary of Experimental Results for the Foundation Elements Tested

The average load-settlement curves obtained from the experimentally
observed data for all the foundation elements tested are plotted in Fig. 32.

Though a thorough discussion was given, in separate articles of this
chapter, about each of the foundation elements, it is thought helpful to
summarize the results.

Referring to Fig. 32, it may be seen that the load-settlement curves
of the cone and sphere did not show the ultimate load capacity values as
were observed for the circular plates. This, of course, was expected from
both the cone and sphere since their cross-sectional areas at the plane of
the original soil surface increased with increase in settlement.

Were it possible to increase the load without increasing the cross-

sectional area at the plane of the original soil surface, probably the
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load-settlement curves would have shown ultimate load conditions similar to
those of the circular plates. However, since the theoretical calculations,
Appendices B and C, which were based on ultimate failure conditions, agreed
closely with the experimentally observed results, the bearing capacity
values previously discussed may well be considered as those at the ultimate
load. Moreover, this point is only of academic interest since in this

investigation the primary interest was the load-settlement relationships.




CHAPTER SIX
LOAD-SETTLEMENT RELATIONS OF FOUNDATION ELEMENTS

IN NON-DIMENSIONAL FORM

6.1 Introductionl’ 4,7, 11

Dimensional analysis is a method by means of which we may deduce infor-
mation about a phenomenon described by a dimensional equation, all terms of
which have the same measure formula.

Dimensional analysis is a useful and convenient technique for finding
the quantitative conditions for similarity of behavior.

The use of dimensional analysis in connection with scale models has
proved to be of great importance. Information gained from experiments
using models proved very useful when the mathematical theory was found to
be too difficult. The theory of models founded on the method of dimensions

is indispensable to the modern engineer in planning his experiments.

6.2 Dimensional Analysis in Soil Mechanics7

A. Physical Similitude
The following well known considerations of similitude in science
form the basis for the discussion with respect to particular phases of soil
mechanics that are related to the investigation,
Considering a model test that is assumed to be a true picture, at
reduced scale, of a prototype phenomenon, the requirements are:
(1) Geometric similarity: If two, arbitrary, lengths in the

model are designated by Lj, and Ly, and the corresponding

96
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lengths in the prototype by L, and Ly, the geometric

similarity is expressed by
—%“J.l-— =_I-Bl__ (45)
hp Lop
This fraction gives the linear scale ratio. It means that the ratio
of two arbitrary lengths in the model is equal to the same ratio in the
prototype, or corresponding ratios L;/L; are equal in model and prototype.
For static phenomenon, only the geometric similarity is of immediate
interest, whereas in dynamic problems, the kinematic similarity is also
required.
(2) Kinematic similarity: Designating the velocities by V,
the kinematic similarity would then be expressed (using
the same approach as for the geometric similarity) as:
_3]"'_ - —33“" (46)
P ap
Though these two expressions form our primary interest for similitude,
the physical conditions must be added since it is far from certain that the
model would be physically stable, a condition quite sure for the prototype,
These physical conditions could be expressed as conditions of equilibrium
of the individual particles which are 4uite evident for the static case.
For a dynamic problem inertia forces (mass x negative acceleration) are
applied to all particles.
(3) Dynamic Similarity: In the prototype all particles are in
equilibrium at any time. Therefore, the system of forces

in the model must be a true picture of those in the prototype
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so as to fulfill the same conditions. Designating forces by
F, the dynamic similarity is expressed by
i - _Fan - 47
Far Fap
B. Dimensional Analysis Applied to Settlements on Sand
In the development of the basic equation for load-settlement rela-
tionships in non-dimensional form a circular foundation element is considered.

If the settlement is y due to the load p the foundation element carries

per unit of area, then geometric similarity requires that

Ya. _ Yo (48)

where B is the diameter of the foundation element,
The most important forces in a problem of settlement on sand are the
external load p per unit of area and the unit weight Y of the sand which
constitutes the gravitational forces.
If the gravitational stresses in the sand are represented by v B

3

then the dynamic similarity requires that
P =<2 . 49
<yB A YB " | (49)

For proper presentation of the loading test in a dimensionally correct

form, Eqs. 48 and 49 may be combined in the form of

X - —P_
B ! ( YB (50)
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where f, 1is 2 dimensionless factoT.
1f the dimensionless parameter f, can be determined in some manner,
Eq. 50 can be used to predict the behavior of foundation of various sizes

on the surface of different types of sand.

6.3 Non-Dimensional Relations for the Plates, Cone, and Spheres

The non-dimensional approach expressed in Eq. 50 was used in plotting
Fig. 33 from the general plot shown in Fig. 32, In using Eq. 50 the value
of the sand density vy of 101 1b/£t® was employed to compute the gravita-
tional stresses YB.

1t may be noted that in plotting Fig. 33 the average curves were
used. For the plates and spheres, there was some negligible scatter, which
did not show on the scale of the general plot.

Figure 33 shows in non-dimensional form the load-settlement relation-
ships for circular plates, 2 60 degree cone, and spheres. 1t is of signi-
ficant importance to note that only one curve represents the load-settlement
relationships for each of the three types of foundation elements. There-
fore, the information contained in Fig. 33 predicts the behavior of any
size circular plate, any 60 degree cone, and any size sphere 1oaded on the
surface of a cohesionless sand of the same physical properties as the sand
used in this jnvestigation.

Since in general, sands of the exact type used in this investigation
will not be encountered, it is important to have procedures for predicting
behavior for any sand. The following paragraphs show the developed proce-
dure.

The bearing capacity of the spheres and cone may be expressed as
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qg = [Constant] ByNy (51)

then the relation

(};%T = [Constant] Ny (52)

Therefore, as seen from Eq. 52, the non-dimensional relations for any
sphe;e or 60 degree cone is directly proportional to the value of Ny which
is a function of the angle of intermal friction of the sand, (Refer to Fig.
6.) So in using Fig. 33 for various types of sands the values from the curves
must be multiplied by the ratio of 96, which is the Ny for the soil used
in this investigation, to the value of 'Ny for the new soil as determined
from Fig. 6.

For the 60 degree cone the curve will always be a straight line for
one value of y/B regardless of the type of sand. As an example, for sand
with an angle of internal friction ¢ equal to 32 degrees, the relation
g/yB for any 60 degree cone equals the values from Fig. 33 multiplied by
96/28, where 28 is the Ny of the type of sand. (See Fig. 6.)

Similarly the curve for spheres will always be one vertical line for
one type of sand since the relation q/YB is a constant. However, for
various types of sand the curve is shifted in proportion to the ratio of
Ny's as explained above.

Analyzing Eq. 50 with respect to the curve for plates, it may be
observed that the dimensionless parameter £, is a constant and is equal
to the slope of the early part of the curve, This relation holds true up

to about 1/2 the ultimate value of g/yB at which stage the curve deviates
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from this tangent. It is of significance to note that this constant f,

may be used to compute relations for plates up to 1/2 the ultimate and also

to locate the point of intersection between the initial tangent to the curve
and the vertical line indicating the ultimate condition. As previously dis-
cussed this is possible for any size plate, Equation 52 may be used to ob-

tain the values of the ultimate condition since Eq. 51 represents the ulti-

mate bearing capacity for circular plates. Therefore, for any type of sand,
the value of the ¢/yB at the ultimate must be corrected by multiplying it

by the ratio of the Ny's as shown for the other two elements.
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CHAPTER SEVEN

CONCLUSIONS

From the results of this investigation the following observations may

be made:

1.

The ultimate bearing capacity for circular plates placed on the
surface of cohesionless soils varies directly with respect to the
diameter of the plate.

The bearing capacity of the cone on cohesionless soil, as expressed
in terms of the cross-sectional area, varies directly with respect
to the cross-sectional diameter at the level of the embedment or
settlement. It may be concluded that the ultimate bearing capacity
of the cone placed on cohesionless soils behaves similarly to cir-
cular foundation elements.

The bearing capacity of the sphere on cohesionless soil as expressed
in terms of the cross-sectional area varies directly with respect
to the cross-sectional diameter at the level of the embedment or
settlement.

The bearing capacities of any two spheres on cohesionless soil

are equal, regardless of size of spherical diameter, at equivalent
cross-sectional areas.

The ultimate bearing capacity of a cone, whose half vertex angle

is 30 degrees, on cohesionless soil is expressed by

g = 0.24y BNy (plate) 1b/£ft® of cross-sectional area
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where B 1is the cross-sectional diameter of the cone at the level
of the embedment, and Ny the bearing capacity coefficient for
circular plates

or
q = 0.28y y Ny (plate) 1b/ft® of cross-sectional area

where y is the embedment or settlement

or
qu = 0.12y B Ny (plate) 1b/£t® of surface contact area

where B is the diameter of the cone at the level of the settle-
ment that furnishes the surface contact area.

Based on the theory developed in this investigation, the bearing
capacity of the cone, whose half vertex angle is 30 degrees, on

cohesionless soil may be expressed as

Q
i

0.30y B My (come) 1b/ft®

or

g = 0.345y y Ny (cone) 1b/£t°.

The bearing capacity of a sphere on cohesionless soil is expressed

by
g = 0.165y B Ny (plate) 1b/ft®

where B 1is the cross-sectional diameter at the level of the
embedment, and Ny the bearing capacity coefficient for circular

plates, or




10.

11.

12,
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g = 0.33y/y (D-y) N (plate) 1b/ft®

where D is the spherical diameter of the sphere, and y is the
settlement or embedment.
Based on the theory developed in this investigation the bearing

capacity of a sphere on cohesionless soil may be expressed as

g = 0.3y B Ny (sphere) 1b/£t?
or
g =0.6vy/y (D-y) Ny (sphere) 1b/ft2.

The non-dimensional relationship for load-settlement curves

may be expressed as
<L = g [;_1_
B YB

where f; is dimensionless parameter,

For a specific type of sand there is only one non-dimensional curve
for any size circular plate, any size sphere, or 60 degree cone.
The equation of Terzaghi for ultimate bearing capacity of circular
plates placed on the surface of cohesionless soils is quite accu-
rate as shown by the observed test results.

The settlement at the ultimate bearing capacity for circular

plates placed on the surface of cohesionless soils varies directly
with respect to the area of the plate or the square of the diameter

of the plate,




13,

14,

15,

16.

17.

18.

19,
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The load-settlement relationship for a cone with a 30 degree half
vertex angle tested on the surface of a cohesionless soil is a
straight line.

The coefficient of subgrade reaction #4; is a constant for any
one circular plate on any one cohesionless soil only for the
values of the subgrade reaction p that do not exceed one-half
the value of the ultimate bearing capacity for that plate.

The value of the coefficient of subgrade reaction #4; varies
inversely with respect to the diameter of the plate loaded as

a footing element.

The bearing capacities for two equivalent cross sections of

the cone and sphere have the ratio of 1.5, which indicates the
effect of the surface contact area,

The thickness of the sand layer must be at least eight times

the diameter of the circular foundation element so as not to

have any effects from the lower layer on the ultimate bearing
capacity, the settlement at the ultimate bearing capacity, and the
modulus of subgrade reaction.

If the settlement at the ultimate bearing capacity does not
govern the design, the ultimate bearing capacity attained by
condition 17 may be developed with a sand layer that is twice

the diameter of the foundation element in thickness, and under-
lain by a solid strata such as rock. The error introduced is about
+8.5 per cent.

Maximum ultimate bearing capacity and minimum settlement at

the ultimate bearing capacity were observed when the thickness
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of the sand layer was four times the diameter of the foundation

element and underlain by a solid strata.
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APPENDIX A

Steps Used in the Calculations of the Bearing Capacity Coefficient Ny for

for

a Strip Footing.

(Refer to freebody diagram, Fig. 34)

Typical steps to be carried out for all the failure surfaces assumed

trial:

1.

Subdivide the soil mass (hatched boundaries) into a convenient
number of elements and compute the total area and the total moment
of this area, thus determining the center of gravity.

Compute the moment arm d,, distance of total mass weight (total
area) from the center of the assumed log spiral surface.

Compute the moment arm d,l, of the passive pressure p; which is
assumed to act at 2/3 the height h from the center of the assumed
log spiral surface.

Compute p; from the relation
p1 = 1/2 ¥ v [tan‘" (45 + ¢/2)] = 1/2 h3y [kPR:]

where h is in terms of r.

Compute the total weight W keeping it in terms of Yy and r ,
thus it is equal to A[ v ] where A 1is the total area in
terms of the scale chosen for r .

Enter all previously calculated values in a tabular form, as shown,

and compute the resisting moment of the soil against failure.

M=Wd, +P &,

110



10.

111

(note that both W and P;, are in terms of (raY) and that d,

and dPl in terms of r . Therefore, the moment is in terms of

3
ry .

The moment of the load causing failure is

B, &,

where d&p is the distance of P, from the center of the log spiral
surface. (Note that it depends on the pressure distribution at the
base of the footing.)

Thus, compute dpp in terms of r .

Compute P, from the equilibrium equation

P, = Wy + Py &y -y £,

P
The value of the constant is Ny.
Repeat Steps 1 through 9 for the various assumed failure surfaces,
and plot the results of the values of Ny. The minimum value would

be the controlling value to be used in determining the load P;.
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CALCULATIONS OF THE BEARING CAPACITY COEFFICIENT Ny FOR A
PLATE FOR § = ¢

Surface - 1 - (Refer to Fig. 35)

Mean Ordinate Width Area Arm
10 10 100 v 5
11.6 10 116 15

9.6 5 48 22.5
264
231"
233
_ 3216.67  _
C.G. = 233 = 13,81
d, = 13.81
-3.50
10.31 = 10.31 r
4 = % h = S x 84 = 56
+3.6
9,2 = 0.92 r

*
Area of triangular wedge = —%— x 10 x 6,2 =31

*
Moment of triangular wedge = 31 x 3~ = 103.33

113

Moment
500
1740

1080

3320

-103.33

3216.67



Ny = 41 Jﬁ_

Ny= 25 :ﬁ;

v
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FIG. 35 FAILURE SURFACES FOR A STRIP FOOTING
FOR A RISE ANGLE ¢y EQUAL TO ¢
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Surface - 2

Mean Ordinate Width Area Arm Moment
11.7 10 117 5 585
15 10 150 15 2250
13.2 10 132 25 3300
399 6135
-31 -103.33
368 6031.67
_ 6031. 67 _
C.G. = 368 = 16.39
d, = 16.39
-5.50
10.89 = 1.089 r
G, = —=h= % x 10.8 = 7.2
+2.5
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Surface - 3

Mean Ordinate Width Area Arm Moment
13.4 10 134 5 670
18 10 180 15 2700
17.7 10 177 25 4425
15 5 75 32.5 2437.5
—;gg_ 10232.5
-31 -103.33
535 10129.17
c.e. = 20117 . 4443
d, = 18.93
-7.13
11.80 = 1l.18 r
g = ——:-23— x ha =% x 13.8 = 9.2
+1.



Mean Ordinate

15.2

20.5

21.3

19

C.G.

Surface - 4

Width Area Am
10 152 5
10 205 5
10 213 25
10 190 35

760
-31
729
278807 - 1,55
21.55
-8.55
13.00 = 1.3r
< n, =2 x 165 = 11
+0.7

11.7

15706.67

1.17 r

760
3075
5325

6650

15810

-103.33
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Surface - 5

Mean Ordinate Width Area Arm Moment
17.3 10 173 5 865
23.5 10 235 15 3525
25 10 250 25 6250
23.5 10 235 35 8225
20.6 5 103 42.5 4377.5

996 23242.5
-31 -103.33
965 23139.,17
_ 23139.17 _
C.G. = 365 = 23.98
d, = 23,98
-9.50
14,48 = 1.448 r
dPl = —%— x hg = —%— x 19.2 = 12.8
+0.0
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Surface - 6

Mean Ordinate Width Area Arm Moment
19.3 10 193 5 965
26 10 260 15 3900
28.3 10 283 25 7075
27.7 10 277 35 9695
24,7 10 247 45 11115
1260 32750
=31 -103.33
1229 32646,67
_ 32646.67  _
C.G. = 1229 = 26.56
d, = 26.56
-10.56
16.00 = 1,6r
4 =—— hg = —— x 2.9 = 14.6
«0.6

14,0 = 1.4 r
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|
|

Value of Ny Based on ‘:V Distribution
|

Surface
dop
1 3.50 - 3.33
10
2 5.50 - 3.33
10
7.13 - 3.33
3 10
8.55 - 3.33
4 - 10
5 9.50 - 3.33
10
6 10.56 - 3.33
10

!

= 0.017

0.217

0.380

0.522

0.617

0.723

5.84

9.62

14.65

21.58

30.58

*. Ny (min) = 25.3

121

M/dy_

203

26.8

25.3

28

35
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Value of Ny Based on ‘5“‘.;;%-“47 Distribution
i
|
Surface dpp M M/dpp
1 = - -
2 5.50 - 5.00  _ . o 5 5 .
10
3 L2 I 2-00_ 0.213 9.62 45
0
4 8.55 - 5.00  _ o es L5 =
0
> 2:20 n 2:00  _ 4 450 21.58 48
0 .
6 10. 56 ;05.00 - 0.556 2. 58 s

Ny (min) = 41.3




Surface

Value of Ny Based on \ |

dpP
7.13 ;05-57 = 0.046
8.55 IO6.67 - 0.188
9.50 106.67 — 0.283
10.56 - 6.67 _ o o0

10

Distribution

9.62

14.65

21.58

30.58

123

M/dy

210

76

78.5

78 e ———
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Calculations of the Bearing Capacity Coefficient Ny for a
Plate for ¢ = 45 + ¢/2

Surface 1 (Refer to Fig. 36)

Mean Ordinate Width Area Arm Moment
12,7 10 127 5 635
14.5 10 145 15 2175
12,2 5 61 22.5 1372.5

333 4182.,5
-22.5° -37.5"
310.5 4145.0
_ 4145 _
C.G. = 310.5 = 13.35
d, = 13.35
-3.00
10.35 = 2.07 r
4, = = = xl1l= 7.3
+ 1.00
8.33 = 1.67r
*Area of Triangular Wedge = 1/2 x5 x 9 = 22.5
*Moment of Triangular Wedge = 22.5 x 5/3 = 37.5
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FIG. 36 FAILURE SURFACES FOR A STRIP FOOTING

FOR A RISE ANGLE ¢ EQUAL TO 45°+§-




Mean Ordinate

14.5

17.7

16

. G.

Width

10

10

10

7342.5
459.5

15.98
- 5.18

10.80

IS

Surface 2

Area

145
177

160

482

- 22.5

459.5

15,98

2.16 r

15

25

126

Moment

725

2655

4000

7380
- 37.5

7342.5
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Surface 3
Mean Ordinate Width Area Arm Moment
16,2 10 162 5 810
20.7 10 207 15 3105
20.3 10 203 25 5075
18 5 90 32,5 2925
662 11915
- 22.5 - 37.5
639.5 11877.5
_ 11877.5 _
C.G. = —€39.5 18.57
d, = 18.57
- 6.80
11.77 = 2.35 r
y = L =2 x 165 - u

10.0 = 2.0r



Mean Ordinate Width
18.2 10
23.5 10
24.2 10
21.7 10

_18042.5
.. = 853.5
d, = 21.14
- 8.30
12.84

2
b = 3 P T

Surface 4

Area Arm
182 5
235 15
242 25
217 35
876
- 22,5
853.5
= 21.14
= 2.57 r
2 —
3" x 19.5 = 13
- 1.8

Moment
910
3525
6050

7595

18080
- 37.5

18042.5
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Surface

Value of Ny based on

3.00

5.18

6.80

8.30

7777
dp |
1.67 _ 0.265
167 _ 9.702
1.87 _ 1.026
1.67 _ 1,326

NY(min) -

88

Distribution

38.80

62.4

95.50

143.5

130

M/d,

147

88

92.5

108.5




Surface

M

Value of Ny Based on
d’p
3.00 - 2.5 _
5 = 0.1
2.18 - 2.5 _ . 536
5
6.80 - 2.5 _ .86
5
8.30 ; 2.5 _ 1.16

M (min) = 110

true from curve =

109

Distribution

38.8

62.4

95.5

143.5

131

M/dy
388
116.5
110.
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Surface

Values of Ny

5.18

6.80

8.30

Based on

dpp
3.33 = 0.37
3.33 = 0,695
3.33 = 0.995

N (min) =

137

Distribution

62.4

95.5

143.5

132

M/dy_

169
137

144
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Appendix B

The calculations of the bearing capacity coefficient Ny for a wedge-
shaped foundation element are shown in this appendix (refer to Fig. 37).
The proposed failure surfaces, and the procedure followed in the calcula-
tions, are based on the theory of Terzaghi previously covered. The steps

are the same as those outlined in Appendix A.
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Calculations for the Bearing Capacity Coefficient Ny

Surface 2 - (Refer to Fig. 37)

Mean Ordinate Width Area Arm
21.3 10 213 - 5
21.7 10 217 15
19.2 10 192 25

622

_ 9120 -
C.G. = £22 14.66
d, = 14,66

+ 4,00

18.66 = 1,866 r
dq, = —%—- hy = —%— x 16.5 = 11.00
+ 1.50

12.50 =

1.25 r

135

for a Cone

Moment

1065
3255

4800

9120




CONE - 30°= HALF VERTEX

\

Ny =20.8

¢ OF FOOTING

136

40

| cone O£ 45°— /2 WA\
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-
<
-

FIG. 37 PROPOSED FAILURE SURFACES FOR A CONE
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Mean

Ordinate

22.3
24,5
23.5

20.7

C.G.

by

Width
10
10

10

14028.75

806.5

17.38
- 1.50

15.88

2 _
R

Surface 3
Area
223
245
235

103.5

806.5

= 17.38

[
-
w
[0 2]
(o]
2]

15
25

32.5

137

Moment
1115
3675
5875
3363.75

14028.75




Mean Qrdinate

23.8
27.4
27.5

24.7

C.G.

Surface 4
Width Area Arm
10 238 5
10 274 15
10 275 25
10 247 35
1034
_ 20820 _
= 1034 20.14
= 20.14
- 5.00
15.14 = 1.514 r
2 2 _
- X hy = 3 x 22 14.67
- 3.00
11.67 =

1.167

Moment

1190
4110
6875

8645

20820

138



Mean Ordinate Width
25 10
29.8 10
30.8 10
29,2 10
26,2 5

29207.5
C.G. ———-—1279
d, = 22.84
- 7.00
15.84
2
% =—3 x bs

Surface 5

Area

250

298

308

292

131

1279

22.85

1.584 r

139

Am Moment
5 1250
15 4470
25 7700
35 10220
42.5 5567.5
29207.5
16.6
- 3.5
13,1 = 1.31r
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APPENDIX C
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Appendix C

The calculations of the bearing capacity coefficient Ny for a strip
foundation element with a spherical base are shown in this appendix. (Refer
to Fig. 38.) The proposed failure surfaces and the procedure followed in
the calculations are based on the theory of Terzaghi previously covered.

The steps are the same as those outlined in Appendix A.
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SPHERE

N in =15
Y min. 30

20
¢ OF FOOTING
10
_TANGENT
7/
1
0

45°-¢/2=29°

FIG. 38 PROPOSED FAILURE SURFACES FOR A SPHERE



Calculations of the Bearing Capacity Coefficient Ny

Surface 1 - (Refer to Fig. 38)

.Mean Ordinate Width Area Arm Moment
14,2 3.5 49.70 1.75 86.98
15.1 10 151.00 8.5 1283.50
13.4 10 134.00 18.5 2479.00

334.70 3849.48
-23.63" -27.58
311.07 3821.90
_3821.90  _
C.G. = 311.07 = 12,28
d, = 12,28
+ 3.00
15.28 = 1,528 r
& = = b = Fx11= 7.33
+3.20
10.53 = 1.053 r
*Area of triangular wedge = 1/2 x 13,5 x 3.5 = 23.63
* ) 3.5
Moment of triangular wedge = 23.63 x = 27.58

"3

for a Sphere
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Surface 2
Mean Qrdinate Width Area Arm Moment
14.8 3.5 51.8 1.75 90.65
17.6 10 176.0 8.5 1496.00
17.6 10 176.0 18.5 3256.00
15,2 5 76.0 26 1976.00
479.80 6818.65
- 23,63 27.58
456,17 6791.07
6791.07
C. G. ~456.17 14.89
d, = 14.89
- 2.00
12,89 = 1.289 r
dp = —%— hy = —%— x 13.8 = 9,2
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Surface 3

Mean Ordinate  Width Area Am Moment
15.4 3.5 53.9 1.75 94.33
19.7 10 197 8.5 1674.5
21 10 210 18.5 3885.0
19 10 190 28. 5 5415.0

650.90 11068.83
-23.63 - 27.58
627.27 11041, 25
c.G. = _llggéf%;_ = 17.60
d, = 17.60
- 5.00
12,60 = 1,26 r
G, = = hy = —— x 16,5 = 1L.0
- 0.7

10.3 = 1.03 r
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Surface 4
Mean Ordinate Width Area Arm Moment
16, 3.5 56 1.75 98
21.5 10 215 8.5 1827.5
24,2 10 242 18.5 4477.0
23.5 10 235 28.5 6697.5
20.6 5 103 36 3708.0
851. 16808.0
- 23.63 - 27.58
827.37 16780.42
_ 16780.42 -
C. G. = 827 37 20.28
d, = 20.28
- 7.00
13.28 = 1.328 r
& = = hy=-% x 19.5 = 13.0
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